
Intel Architecture Software Developer’s Manual 49-187

L

L 49

49.1 LAHF—Load Status Flags into AH Register

Description
Moves the low byte of the EFLAGS register (which includes status flags SF, ZF, AF, PF, and CF) to
the AH register. Reserved bits 1, 3, and 5 of the EFLAGS register are set in the AH register as
shown in the “Operation” section below.

Operation
AH ← EFLAGS(SF:ZF:0:AF:0:PF:1:CF);

Flags Affected
None (that is, the state of the flags in the EFLAGS register are not affected).

Exceptions (All Operating Modes)
None.

49.2 LAR—Load Access Rights Byte

Description
Loads the access rights from the segment descriptor specified by the second operand (source
operand) into the first operand (destination operand) and sets the ZF flag in the EFLAGS register.
The source operand (which can be a register or a memory location) contains the segment selector
for the segment descriptor being accessed. The destination operand is a general-purpose register.

The processor performs access checks as part of the loading process. Once loaded in the destination
register, software can perform additional checks on the access rights information.

When the operand size is 32 bits, the access rights for a segment descriptor include the type and
DPL fields and the S, P, AVL, D/B, and G flags, all of which are located in the second doubleword
(bytes 4 through 7) of the segment descriptor. The doubleword is masked by 00FXFF00H before it

Opcode Instruction Description

9F LAHF Load: AH = EFLAGS(SF:ZF:0:AF:0:PF:1:CF)

Opcode Instruction Description

0F 02 /r LAR r16,r/m16 r16 ← r/m16 masked by FF00H

0F 02 /r LAR r32,r/m32 r32 ← r/m32 masked by 00FxFF00H

49-188 Intel Architecture Software Developer’s Manual

L

is loaded into the destination operand. When the operand size is 16 bits, the access rights include
the type and DPL fields. Here, the two lower-order bytes of the doubleword are masked by FF00H
before being loaded into the destination operand.

This instruction performs the following checks before it loads the access rights in the destination
register:

• Checks that the segment selector is not null.

• Checks that the segment selector points to a descriptor that is within the limits of the GDT or
LDT being accessed

• Checks that the descriptor type is valid for this instruction. All code and data segment
descriptors are valid for (can be accessed with) the LAR instruction. The valid system segment
and gate descriptor types are given in the following table.

• If the segment is not a conforming code segment, it checks that the specified segment
descriptor is visible at the CPL (that is, if the CPL and the RPL of the segment selector are less
than or equal to the DPL of the segment selector).

If the segment descriptor cannot be accessed or is an invalid type for the instruction, the ZF flag is
cleared and no access rights are loaded in the destination operand.

The LAR instruction can only be executed in protected mode.

Operation
IF SRC(Offset) > descriptor table limit THEN ZF ← 0; FI;
Read segment descriptor;
IF SegmentDescriptor(Type) ≠ conforming code segment

AND (CPL > DPL) OR (RPL > DPL)
OR Segment type is not valid for instruction

THEN
ZF ← 0

ELSE
IF OperandSize = 32

Type Name Valid

0 Reserved No

1 Available 16-bit TSS Yes

2 LDT Yes

3 Busy 16-bit TSS Yes

4 16-bit call gate Yes

5 16-bit/32-bit task gate Yes

6 16-bit interrupt gate No

7 16-bit trap gate No

8 Reserved No

9 Available 32-bit TSS Yes

A Reserved No

B Busy 32-bit TSS Yes

C 32-bit call gate Yes

D Reserved No

E 32-bit interrupt gate No

F 32-bit trap gate No

Intel Architecture Software Developer’s Manual 49-189

L

THEN
DEST ← [SRC] AND 00FxFF00H;

ELSE (*OperandSize = 16*)
DEST ← [SRC] AND FF00H;

FI;
FI;

Flags Affected
The ZF flag is set to 1 if the access rights are loaded successfully; otherwise, it is cleared to 0.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a null
segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3. (Only occurs when fetching target from
memory.)

Real-Address Mode Exceptions
#UD The LAR instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The LAR instruction cannot be executed in virtual-8086 mode.

49.3 LDS/LES/LFS/LGS/LSS—Load Far Pointer

Description
Loads a far pointer (segment selector and offset) from the second operand (source operand) into a
segment register and the first operand (destination operand). The source operand specifies a 48-bit
or a 32-bit pointer in memory depending on the current setting of the operand-size attribute (32 bits

Opcode Instruction Description

C5 /r LDS r16,m16:16 Load DS:r16 with far pointer from memory

C5 /r LDS r32,m16:32 Load DS:r32 with far pointer from memory

0F B2 /r LSS r16,m16:16 Load SS:r16 with far pointer from memory

0F B2 /r LSS r32,m16:32 Load SS:r32 with far pointer from memory

C4 /r LES r16,m16:16 Load ES:r16 with far pointer from memory

C4 /r LES r32,m16:32 Load ES:r32 with far pointer from memory

0F B4 /r LFS r16,m16:16 Load FS:r16 with far pointer from memory

0F B4 /r LFS r32,m16:32 Load FS:r32 with far pointer from memory

0F B5 /r LGS r16,m16:16 Load GS:r16 with far pointer from memory

0F B5 /r LGS r32,m16:32 Load GS:r32 with far pointer from memory

49-190 Intel Architecture Software Developer’s Manual

L

or 16 bits, respectively). The instruction opcode and the destination operand specify a segment
register/general-purpose register pair. The 16-bit segment selector from the source operand is
loaded into the segment register specified with the opcode (DS, SS, ES, FS, or GS). The 32-bit or
16-bit offset is loaded into the register specified with the destination operand.

If one of these instructions is executed in protected mode, additional information from the segment
descriptor pointed to by the segment selector in the source operand is loaded in the hidden part of
the selected segment register.

Also in protected mode, a null selector (values 0000 through 0003) can be loaded into DS, ES, FS,
or GS registers without causing a protection exception. (Any subsequent reference to a segment
whose corresponding segment register is loaded with a null selector, causes a general-protection
exception (#GP) and no memory reference to the segment occurs.)

Operation
IF ProtectedMode

THEN IF SS is loaded
THEN IF SegementSelector = null

THEN #GP(0);
FI;
ELSE IF Segment selector index is not within descriptor table limits
OR Segment selector RPL ≠ CPL
OR Access rights indicate nonwritable data segment
OR DPL ≠ CPL

THEN #GP(selector);
FI;
ELSE IF Segment marked not present

THEN #SS(selector);
FI;
SS ← SegmentSelector(SRC);
SS ← SegmentDescriptor([SRC]);

ELSE IF DS, ES, FS, or GS is loaded with non-null segment selector
THEN IF Segment selector index is not within descriptor table limits
OR Access rights indicate segment neither data nor readable code segment
OR (Segment is data or nonconforming-code segment

AND both RPL and CPL > DPL)
THEN #GP(selector);

FI;
ELSE IF Segment marked not present

THEN #NP(selector);
FI;
SegmentRegister ← SegmentSelector(SRC) AND RPL;
SegmentRegister ← SegmentDescriptor([SRC]);

ELSE IF DS, ES, FS or GS is loaded with a null selector:
SegmentRegister ← NullSelector;
SegmentRegister(DescriptorValidBit) ← 0; (*hidden flag; not accessible by software*)

FI;
FI;
IF (Real-Address or Virtual-8086 Mode)

THEN
SegmentRegister ← SegmentSelector(SRC);

FI;
DEST ← Offset(SRC);

Flags Affected
None.

Protected Mode Exceptions
#UD If source operand is not a memory location.

#GP(0) If a null selector is loaded into the SS register.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS
segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a null
segment selector.

Intel Architecture Software Developer’s Manual 49-191

L

#GP(selector) If the SS register is being loaded and any of the following is true: the segment
selector index is not within the descriptor table limits, the segment selector RPL
is not equal to CPL, the segment is a nonwritable data segment, or DPL is not
equal to CPL.

If the DS, ES, FS, or GS register is being loaded with a non-null segment
selector and any of the following is true: the segment selector index is not within
descriptor table limits, the segment is neither a data nor a readable code
segment, or the segment is a data or nonconforming-code segment and both RPL
and CPL are greater than DPL.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#SS(selector) If the SS register is being loaded and the segment is marked not present.

#NP(selector) If DS, ES, FS, or GS register is being loaded with a non-null segment selector
and the segment is marked not present.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#UD If source operand is not a memory location.

Virtual-8086 Mode Exceptions
#UD If source operand is not a memory location.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS
segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

49.4 LEA—Load Effective Address

Opcode Instruction Description

8D /r LEA r16,m Store effective address for m in register r16

8D /r LEA r32,m Store effective address for m in register r32

49-192 Intel Architecture Software Developer’s Manual

L

Description
Computes the effective address of the second operand (the source operand) and stores it in the first
operand (destination operand). The source operand is a memory address (offset part) specified with
one of the processors addressing modes; the destination operand is a general-purpose register. The
address-size and operand-size attributes affect the action performed by this instruction, as shown in
the following table. The operand-size attribute of the instruction is determined by the chosen
register; the address-size attribute is determined by the attribute of the code segment.

Different assemblers may use different algorithms based on the size attribute and symbolic
reference of the source operand.

Operation
IF OperandSize = 16 AND AddressSize = 16

THEN
DEST ← EffectiveAddress(SRC); (* 16-bit address *)

ELSE IF OperandSize = 16 AND AddressSize = 32
THEN

temp ← EffectiveAddress(SRC); (* 32-bit address *)
DEST ← temp[0..15]; (* 16-bit address *)

ELSE IF OperandSize = 32 AND AddressSize = 16
THEN

temp ← EffectiveAddress(SRC); (* 16-bit address *)
DEST ← ZeroExtend(temp); (* 32-bit address *)

ELSE IF OperandSize = 32 AND AddressSize = 32
THEN

DEST ← EffectiveAddress(SRC); (* 32-bit address *)
FI;

FI;

Flags Affected
None.

Protected Mode Exceptions
#UD If source operand is not a memory location.

Real-Address Mode Exceptions
#UD If source operand is not a memory location.

Virtual-8086 Mode Exceptions
#UD If source operand is not a memory location.

Operand Size Address Size Action Performed

16 16 16-bit effective address is calculated and stored in requested
16-bit register destination.

16 32 32-bit effective address is calculated. The lower 16 bits of the
address are stored in the requested 16-bit register destination.

32 16 16-bit effective address is calculated. The 16-bit address is zero-
extended and stored in the requested 32-bit register destination.

32 32 32-bit effective address is calculated and stored in the requested
32-bit register destination.

Intel Architecture Software Developer’s Manual 49-193

L

49.5 LEAVE—High Level Procedure Exit

Description
Releases the stack frame set up by an earlier ENTER instruction. The LEAVE instruction copies
the frame pointer (in the EBP register) into the stack pointer register (ESP), which releases the
stack space allocated to the stack frame. The old frame pointer (the frame pointer for the calling
procedure that was saved by the ENTER instruction) is then popped from the stack into the EBP
register, restoring the calling procedure’s stack frame.

A RET instruction is commonly executed following a LEAVE instruction to return program control
to the calling procedure.

See “Procedure Calls for Block-Structured Languages” in Chapter 6 of the Intel Architecture
Software Developer’s Manual, Volume 3, for detailed information on the use of the ENTER and
LEAVE instructions.

Operation
IF StackAddressSize = 32

THEN
ESP ← EBP;

ELSE (* StackAddressSize = 16*)
SP ← BP;

FI;
IF OperandSize = 32

THEN
EBP ← Pop();

ELSE (* OperandSize = 16*)
BP ← Pop();

FI;

Flags Affected
None.

Protected Mode Exceptions
#SS(0) If the EBP register points to a location that is not within the limits of the current

stack segment.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If the EBP register points to a location outside of the effective address space

from 0 to 0FFFFH.

Opcode Instruction Description

C9 LEAVE Set SP to BP, then pop BP

C9 LEAVE Set ESP to EBP, then pop EBP

49-194 Intel Architecture Software Developer’s Manual

L

Virtual-8086 Mode Exceptions
#GP(0) If the EBP register points to a location outside of the effective address space

from 0 to 0FFFFH.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

49.6 LES—Load Full Pointer

See entry for LDS/LES/LFS/LGS/LSS—Load Far Pointer.

49.7 LFS—Load Full Pointer

See entry for LDS/LES/LFS/LGS/LSS—Load Far Pointer.

49.8 LGDT/LIDT—Load Global/Interrupt Descriptor Table
Register

Description
Loads the values in the source operand into the global descriptor table register (GDTR) or the
interrupt descriptor table register (IDTR). The source operand specifies a 6-byte memory location
that contains the base address (a linear address) and the limit (size of table in bytes) of the global
descriptor table (GDT) or the interrupt descriptor table (IDT). If operand-size attribute is 32 bits, a
16-bit limit (lower 2 bytes of the 6-byte data operand) and a 32-bit base address (upper 4 bytes of
the data operand) are loaded into the register. If the operand-size attribute is 16 bits, a 16-bit
limit (lower 2 bytes) and a 24-bit base address (third, fourth, and fifth byte) are loaded. Here, the
high-order byte of the operand is not used and the high-order byte of the base address in the GDTR
or IDTR is filled with zeros.

The LGDT and LIDT instructions are used only in operating-system software; they are not used in
application programs. They are the only instructions that directly load a linear address (that is, not
a segment-relative address) and a limit in protected mode. They are commonly executed in real-
address mode to allow processor initialization prior to switching to protected mode.

See “SGDT/SIDT—Store Global/Interrupt Descriptor Table Register” in this chapter for
information on storing the contents of the GDTR and IDTR.

Operation
IF instruction is LIDT

THEN
IF OperandSize = 16

Opcode Instruction Description

0F 01 /2 LGDT m16&32 Load m into GDTR

0F 01 /3 LIDT m16&32 Load m into IDTR

Intel Architecture Software Developer’s Manual 49-195

L

THEN
IDTR(Limit) ← SRC[0:15];
IDTR(Base) ← SRC[16:47] AND 00FFFFFFH;

ELSE (* 32-bit Operand Size *)
IDTR(Limit) ← SRC[0:15];
IDTR(Base) ← SRC[16:47];

FI;
ELSE (* instruction is LGDT *)

IF OperandSize = 16
THEN

GDTR(Limit) ← SRC[0:15];
GDTR(Base) ← SRC[16:47] AND 00FFFFFFH;

ELSE (* 32-bit Operand Size *)
GDTR(Limit) ← SRC[0:15];
GDTR(Base) ← SRC[16:47];

FI; FI;

Flags Affected
None.

Protected Mode Exceptions
#UD If source operand is not a memory location.

#GP(0) If the current privilege level is not 0.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS
segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a null
segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

Real-Address Mode Exceptions
#UD If source operand is not a memory location.

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS
segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

49.9 LGS—Load Full Pointer

See entry for LDS/LES/LFS/LGS/LSS—Load Far Pointer.

49-196 Intel Architecture Software Developer’s Manual

L

49.10 LLDT—Load Local Descriptor Table Register

Description
Loads the source operand into the segment selector field of the local descriptor table register
(LDTR). The source operand (a general-purpose register or a memory location) contains a segment
selector that points to a local descriptor table (LDT). After the segment selector is loaded in the
LDTR, the processor uses to segment selector to locate the segment descriptor for the LDT in the
global descriptor table (GDT). It then loads the segment limit and base address for the LDT from
the segment descriptor into the LDTR. The segment registers DS, ES, SS, FS, GS, and CS are not
affected by this instruction, nor is the LDTR field in the task state segment (TSS) for the current
task.

If the source operand is 0, the LDTR is marked invalid and all references to descriptors in the LDT
(except by the LAR, VERR, VERW or LSL instructions) cause a general protection exception
(#GP).

The operand-size attribute has no effect on this instruction.

The LLDT instruction is provided for use in operating-system software; it should not be used in
application programs. Also, this instruction can only be executed in protected mode.

Operation
IF SRC(Offset) > descriptor table limit THEN #GP(segment selector); FI;
Read segment descriptor;
IF SegmentDescriptor(Type) ≠ LDT THEN #GP(segment selector); FI;
IF segment descriptor is not present THEN #NP(segment selector);
LDTR(SegmentSelector) ← SRC;
LDTR(SegmentDescriptor) ← GDTSegmentDescriptor;

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS
segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#GP(selector) If the selector operand does not point into the Global Descriptor Table or if the
entry in the GDT is not a Local Descriptor Table.

Segment selector is beyond GDT limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NP(selector) If the LDT descriptor is not present.

#PF(fault-code) If a page fault occurs.

Opcode Instruction Description

0F 00 /2 LLDT r/m16 Load segment selector r/m16 into LDTR

Intel Architecture Software Developer’s Manual 49-197

L

Real-Address Mode Exceptions
#UD The LLDT instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The LLDT instruction is recognized in virtual-8086 mode.

49.11 LIDT—Load Interrupt Descriptor Table Register

See entry for LGDT/LIDT—Load Global/Interrupt Descriptor Table Register.

49.12 LMSW—Load Machine Status Word

Description
Loads the source operand into the machine status word, bits 0 through 15 of register CR0. The
source operand can be a 16-bit general-purpose register or a memory location. Only the low-order
4 bits of the source operand (which contains the PE, MP, EM, and TS flags) are loaded into CR0.
The PG, CD, NW, AM, WP, NE, and ET flags of CR0 are not affected. The operand-size attribute
has no effect on this instruction.

If the PE flag of the source operand (bit 0) is set to 1, the instruction causes the processor to switch
to protected mode. While in protected mode, the LMSW instruction cannot be used clear the PE
flag and force a switch back to real-address mode.

The LMSW instruction is provided for use in operating-system software; it should not be used in
application programs. In protected or virtual-8086 mode, it can only be executed at CPL 0.

This instruction is provided for compatibility with the Intel 286 processor; programs and
procedures intended to run on the Pentium Pro, Pentium, Intel486, and Intel386 processors should
use the MOV (control registers) instruction to load the whole CR0 register. The MOV CR0
instruction can be used to set and clear the PE flag in CR0, allowing a procedure or program to
switch between protected and real-address modes.

This instruction is a serializing instruction.

Operation
CR0[0:3] ← SRC[0:3];

Flags Affected
None.

Opcode Instruction Description

0F 01 /6 LMSW r/m16 Loads r/m16 in machine status word of CR0

49-198 Intel Architecture Software Developer’s Manual

L

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS
segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a null
segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If the current privilege level is not 0.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS
segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

49.13 LOCK—Assert LOCK# Signal Prefix

Description
Causes the processor’s LOCK# signal to be asserted during execution of the accompanying
instruction (turns the instruction into an atomic instruction). In a multiprocessor environment, the
LOCK# signal insures that the processor has exclusive use of any shared memory while the signal
is asserted.

Note that in later Intel Architecture processors (such as the Pentium Pro processor), locking may
occur without the LOCK# signal being asserted. See Intel Architecture Compatibility below.

The LOCK prefix can be prepended only to the following instructions and to those forms of the
instructions that use a memory operand: ADD, ADC, AND, BTC, BTR, BTS, CMPXCHG, DEC,
INC, NEG, NOT, OR, SBB, SUB, XOR, XADD, and XCHG. An undefined opcode exception will
be generated if the LOCK prefix is used with any other instruction. The XCHG instruction always
asserts the LOCK# signal regardless of the presence or absence of the LOCK prefix.

The LOCK prefix is typically used with the BTS instruction to perform a read-modify-write
operation on a memory location in shared memory environment.

Opcode Instruction Description

F0 LOCK Asserts LOCK# signal for duration of the accompanying
instruction

Intel Architecture Software Developer’s Manual 49-199

L

The integrity of the LOCK prefix is not affected by the alignment of the memory field. Memory
locking is observed for arbitrarily misaligned fields.

Intel Architecture Compatibility
Beginning with the Pentium Pro processor, when the LOCK prefix is prefixed to an instruction and
the memory area being accessed is cached internally in the processor, the LOCK# signal is
generally not asserted. Instead, only the processor’s cache is locked. Here, the processor’s cache
coherency mechanism insures that the operation is carried out atomically with regards to memory.
See “Effects of a Locked Operation on Internal Processor Caches” in Chapter 7 of Intel
Architecture Software Developer’s Manual, Volume 3, the for more information on locking of
caches.

Operation
AssertLOCK#(DurationOfAccompaningInstruction)

Flags Affected
None.

Protected Mode Exceptions
#UD If the LOCK prefix is used with an instruction not listed in the “Description”

section above. Other exceptions can be generated by the instruction that the
LOCK prefix is being applied to.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used with an instruction not listed in the “Description”

section above. Other exceptions can be generated by the instruction that the
LOCK prefix is being applied to.

Virtual-8086 Mode Exceptions
#UD If the LOCK prefix is used with an instruction not listed in the “Description”

section above. Other exceptions can be generated by the instruction that the
LOCK prefix is being applied to.

49.14 LODS/LODSB/LODSW/LODSD—Load String

Opcode Instruction Description

AC LODS m8 Load byte at address DS:(E)SI into AL

AD LODS m16 Load word at address DS:(E)SI into AX

AD LODS m32 Load doubleword at address DS:(E)SI into EAX

AC LODSB Load byte at address DS:(E)SI into AL

AD LODSW Load word at address DS:(E)SI into AX

AD LODSD Load doubleword at address DS:(E)SI into EAX

49-200 Intel Architecture Software Developer’s Manual

L

Description
Loads a byte, word, or doubleword from the source operand into the AL, AX, or EAX register,
respectively. The source operand is a memory location, the address of which is read from the
DS:EDI or the DS:SI registers (depending on the address-size attribute of the instruction, 32 or 16,
respectively). The DS segment may be overridden with a segment override prefix.

At the assembly-code level, two forms of this instruction are allowed: the “explicit-operands” form
and the “no-operands” form. The explicit-operands form (specified with the LODS mnemonic)
allows the source operand to be specified explicitly. Here, the source operand should be a symbol
that indicates the size and location of the source value. The destination operand is then
automatically selected to match the size of the source operand (the AL register for byte operands,
AX for word operands, and EAX for doubleword operands). This explicit-operands form is
provided to allow documentation; however, note that the documentation provided by this form can
be misleading. That is, the source operand symbol must specify the correct type (size) of the
operand (byte, word, or doubleword), but it does not have to specify the correct location. The
location is always specified by the DS:(E)SI registers, which must be loaded correctly before the
load string instruction is executed.

The no-operands form provides “short forms” of the byte, word, and doubleword versions of the
LODS instructions. Here also DS:(E)SI is assumed to be the source operand and the AL, AX, or
EAX register is assumed to be the destination operand. The size of the source and destination
operands is selected with the mnemonic: LODSB (byte loaded into register AL), LODSW (word
loaded into AX), or LODSD (doubleword loaded into EAX).

After the byte, word, or doubleword is transferred from the memory location into the AL, AX, or
EAX register, the (E)SI register is incremented or decremented automatically according to the
setting of the DF flag in the EFLAGS register. (If the DF flag is 0, the (E)SI register is
incremented; if the DF flag is 1, the ESI register is decremented.) The (E)SI register is incremented
or decremented by 1 for byte operations, by 2 for word operations, or by 4 for doubleword
operations.

The LODS, LODSB, LODSW, and LODSD instructions can be preceded by the REP prefix for
block loads of ECX bytes, words, or doublewords. More often, however, these instructions
are used within a LOOP construct because further processing of the data moved into the register is
usually necessary before the next transfer can be made. See “REP/REPE/REPZ/REPNE /
REPNZ—Repeat String Operation Prefix” in this chapter for a description of the REP prefix.

Operation
IF (byte load)

THEN
AL ← SRC; (* byte load *)

THEN IF DF = 0
THEN (E)SI ← (E)SI + 1;
ELSE (E)SI ← (E)SI – 1;

FI;
ELSE IF (word load)

THEN
AX ← SRC; (* word load *)

THEN IF DF = 0
THEN (E)SI ← (E)SI + 2;
ELSE (E)SI ← (E)SI – 2;

FI;
ELSE (* doubleword transfer *)

EAX ← SRC; (* doubleword load *)
THEN IF DF = 0

THEN (E)SI ← (E)SI + 4;
ELSE (E)SI ← (E)SI – 4;

FI;
FI;

FI;

Intel Architecture Software Developer’s Manual 49-201

L

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

49.15 LOOP/LOOPcc—Loop According to ECX Counter

Description
Performs a loop operation using the ECX or CX register as a counter. Each time the LOOP
instruction is executed, the count register is decremented, then checked for 0. If the count is 0, the
loop is terminated and program execution continues with the instruction following the LOOP
instruction. If the count is not zero, a near jump is performed to the destination (target) operand,
which is presumably the instruction at the beginning of the loop. If the address-size attribute is 32
bits, the ECX register is used as the count register; otherwise the CX register is used.

Opcode Instruction Description

E2 cb LOOP rel8 Decrement count; jump short if count ≠ 0

E1 cb LOOPE rel8 Decrement count; jump short if count ≠ 0 and ZF=1

E1 cb LOOPZ rel8 Decrement count; jump short if count ≠ 0 and ZF=1

E0 cb LOOPNE rel8 Decrement count; jump short if count ≠ 0 and ZF=0

E0 cb LOOPNZ rel8 Decrement count; jump short if count ≠ 0 and ZF=0

49-202 Intel Architecture Software Developer’s Manual

L

The target instruction is specified with a relative offset (a signed offset relative to the current value
of the instruction pointer in the EIP register). This offset is generally specified as a label in
assembly code, but at the machine code level, it is encoded as a signed, 8-bit immediate value,
which is added to the instruction pointer. Offsets of –128 to +127 are allowed with this instruction.

Some forms of the loop instruction (LOOPcc) also accept the ZF flag as a condition for terminating
the loop before the count reaches zero. With these forms of the instruction, a condition code (cc) is
associated with each instruction to indicate the condition being tested for. Here, the LOOPcc
instruction itself does not affect the state of the ZF flag; the ZF flag is changed by other instructions
in the loop.

Operation
IF AddressSize = 32

THEN
Count is ECX;

ELSE (* AddressSize = 16 *)
Count is CX;

FI;
Count ← Count – 1;

IF instruction is not LOOP
THEN

IF (instruction = LOOPE) OR (instruction = LOOPZ)
THEN

IF (ZF =1) AND (Count ≠ 0)
THEN BranchCond ← 1;
ELSE BranchCond ← 0;

FI;
FI;
IF (instruction = LOOPNE) OR (instruction = LOOPNZ)

THEN
IF (ZF =0) AND (Count ≠ 0)

THEN BranchCond ← 1;
ELSE BranchCond ← 0;

FI;
FI;

ELSE (* instruction = LOOP *)
IF (Count ≠ 0)

THEN BranchCond ← 1;
ELSE BranchCond ← 0;

FI;
FI;
IF BranchCond = 1

THEN
 EIP ← EIP + SignExtend(DEST);

IF OperandSize = 16
THEN

EIP ← EIP AND 0000FFFFH;
FI;

ELSE
Terminate loop and continue program execution at EIP;

FI;

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If the offset jumped to is beyond the limits of the code segment.

Real-Address Mode Exceptions
None.

Virtual-8086 Mode Exceptions
None.

Intel Architecture Software Developer’s Manual 49-203

L

49.16 LSL—Load Segment Limit

Description
Loads the unscrambled segment limit from the segment descriptor specified with the second
operand (source operand) into the first operand (destination operand) and sets the ZF flag in the
EFLAGS register. The source operand (which can be a register or a memory location) contains the
segment selector for the segment descriptor being accessed. The destination operand is a general-
purpose register.

The processor performs access checks as part of the loading process. Once loaded in the destination
register, software can compare the segment limit with the offset of a pointer.

The segment limit is a 20-bit value contained in bytes 0 and 1 and in the first 4 bits of byte 6 of the
segment descriptor. If the descriptor has a byte granular segment limit (the granularity flag is set to
0), the destination operand is loaded with a byte granular value (byte limit). If the descriptor has a
page granular segment limit (the granularity flag is set to 1), the LSL instruction will translate the
page granular limit (page limit) into a byte limit before loading it into the destination operand. The
translation is performed by shifting the 20-bit “raw” limit left 12 bits and filling the low-order 12
bits with 1s.

When the operand size is 32 bits, the 32-bit byte limit is stored in the destination operand. When
the operand size is 16 bits, a valid 32-bit limit is computed; however, the upper 16 bits are
truncated and only the low-order 16 bits are loaded into the destination operand.

This instruction performs the following checks before it loads the segment limit into the destination
register:

• Checks that the segment selector is not null.

• Checks that the segment selector points to a descriptor that is within the limits of the GDT or
LDT being accessed

• Checks that the descriptor type is valid for this instruction. All code and data segment
descriptors are valid for (can be accessed with) the LSL instruction. The valid special segment
and gate descriptor types are given in the following table.

• If the segment is not a conforming code segment, the instruction checks that the specified
segment descriptor is visible at the CPL (that is, if the CPL and the RPL of the segment
selector are less than or equal to the DPL of the segment selector).

If the segment descriptor cannot be accessed or is an invalid type for the instruction, the ZF flag is
cleared and no value is loaded in the destination operand.

Opcode Instruction Description

0F 03 /r LSL r16,r/m16 Load: r16 ← segment limit, selector r/m16

0F 03 /r LSL r32,r/m32 Load: r32 ← segment limit, selector r/m32)

49-204 Intel Architecture Software Developer’s Manual

L

Operation
IF SRC(Offset) > descriptor table limit

THEN ZF ← 0; FI;
Read segment descriptor;
IF SegmentDescriptor(Type) ≠ conforming code segment

AND (CPL > DPL) OR (RPL > DPL)
OR Segment type is not valid for instruction

THEN
ZF ← 0

ELSE
temp ← SegmentLimit([SRC]);
IF (G = 1)

THEN
temp ← ShiftLeft(12, temp) OR 00000FFFH;

FI;
IF OperandSize = 32

THEN
DEST ← temp;

ELSE (*OperandSize = 16*)
DEST ← temp AND FFFFH;

FI;
FI;

Flags Affected
The ZF flag is set to 1 if the segment limit is loaded successfully; otherwise, it is cleared to 0.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a null
segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

Type Name Valid

0 Reserved No

1 Available 16-bit TSS Yes

2 LDT Yes

3 Busy 16-bit TSS Yes

4 16-bit call gate No

5 16-bit/32-bit task gate No

6 16-bit interrupt gate No

7 16-bit trap gate No

8 Reserved No

9 Available 32-bit TSS Yes

A Reserved No

B Busy 32-bit TSS Yes

C 32-bit call gate No

D Reserved No

E 32-bit interrupt gate No

F 32-bit trap gate No

Intel Architecture Software Developer’s Manual 49-205

L

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Real-Address Mode Exceptions
#UD The LSL instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The LSL instruction is not recognized in virtual-8086 mode.

49.17 LSS—Load Full Pointer

See entry for LDS/LES/LFS/LGS/LSS—Load Far Pointer.

49.18 LTR—Load Task Register

Description
Loads the source operand into the segment selector field of the task register. The source operand (a
general-purpose register or a memory location) contains a segment selector that points to a task
state segment (TSS). After the segment selector is loaded in the task register, the processor uses the
segment selector to locate the segment descriptor for the TSS in the global descriptor table (GDT).
It then loads the segment limit and base address for the TSS from the segment descriptor into the
task register. The task pointed to by the task register is marked busy, but a switch to the task does
not occur.

The LTR instruction is provided for use in operating-system software; it should not be used in
application programs. It can only be executed in protected mode when the CPL is 0. It is commonly
used in initialization code to establish the first task to be executed.

The operand-size attribute has no effect on this instruction.

Operation
IF SRC(Offset) > descriptor table limit OR IF SRC(type) ≠ global

THEN #GP(segment selector);
FI;
Read segment descriptor;
IF segment descriptor is not for an available TSS THEN #GP(segment selector); FI;
IF segment descriptor is not present THEN #NP(segment selector);
TSSsegmentDescriptor(busy) ← 1;
(* Locked read-modify-write operation on the entire descriptor when setting busy flag *)
TaskRegister(SegmentSelector) ← SRC;
TaskRegister(SegmentDescriptor) ← TSSSegmentDescriptor;

Flags Affected
None.

Opcode Instruction Description

0F 00 /3 LTR r/m16 Load r/m16 into task register

49-206 Intel Architecture Software Developer’s Manual

L

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS
segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a null
segment selector.

#GP(selector) If the source selector points to a segment that is not a TSS or to one for a task
that is already busy.

If the selector points to LDT or is beyond the GDT limit.

#NP(selector) If the TSS is marked not present.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

Real-Address Mode Exceptions
#UD The LTR instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The LTR instruction is not recognized in virtual-8086 mode.

